Product Description


Excellent powder metallurgy parts metallic sintered parts
We could offer various powder metallurgy parts including iron based and copper based with top quality and cheapest price, please only send the drawing or sample to us, we will according to customer’s requirement to make it. if you are interested in our product, please do not hesitate to contact us, we would like to offer the top quality and best service for you. thank you!

How do We Work with Our Clients
1. For a design expert or a big company with your own engineering team: we prefer to receive a fully RFQ pack from you including drawing, 3D model, quantity, pictures;

2. For a start-up company owner or green hand for engineering: just send an idea that you want to try, you don’t even need to know what casting is;

3. Our sales will reply you within 24 hours to confirm further details and give the estimated quote time;

4. Our engineering team will evaluate your inquiry and provide our offer within next 1~3 working days.

5. We can arrange a technical communication meeting with you and our engineers together anytime if required.

Place of origin: Jangsu,China
Type: Powder metallurgy sintering
Spare parts type: Powder metallurgy parts
Machinery Test report: Provided
Material: Iron,stainless,steel,copper
Key selling points: Quality assurance
Mould type: Tungsten steel
Material standard: MPIF 35,DIN 3571,JIS Z 2550
Application: Small home appliances,Lockset,Electric tool, automobile,
Brand Name: OEM SERVICE
Plating: Customized
After-sales Service: Online support
Processing: Powder Metallurgr,CNC Machining
Powder Metallurgr: High frequency quenching, oil immersion
Quality Control: 100% inspection

The Advantage of Powder Metallurgy Process

1. Cost effective
The final products can be compacted with powder metallurgy method ,and no need or can shorten the processing of machine .It can save material greatly and reduce the production cost .

2. Complex shapes
Powder metallurgy allows to obtain complex shapes directly from the compacting tooling ,without any machining operation ,like teeth ,splines ,profiles ,frontal geometries etc.

3. High precision
Achievable tolerances in the perpendicular direction of compacting are typically IT 8-9 as sintered,improvable up to IT 5-7 after sizing .Additional machining operations can improve the precision .

4. Self-lubrication
The interconnected porosity of the material can be filled with oils ,obtaining then a self-lubricating bearing :the oil provides constant lubrication between bearing and shaft ,and the system does not need any additional external lubricant .

5. Green technology
The manufacturing process of sintered components is certified as ecological ,because the material waste is very low ,the product is recyclable ,and the energy efficiency is good because the material is not molten. 

FAQ
Q1: What is the type of payment?
A: Usually you should prepay 50% of the total amount. The balance should be pay off before shipment.

Q2: How to guarantee the high quality?
A: 100% inspection. We have Carl Zeiss high-precision testing equipment and testing department to make sure every product of size,appearance and pressure test are good. 

Q3: How long will you give me the reply?
A: we will contact you in 12 hours as soon as we can.

Q4. How about your delivery time?
A: Generally, it will take 25 to 35 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order. and if the item was non standard, we have to consider extra 10-15days for tooling/mould made.

Q5. Can you produce according to the samples or drawings?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.

Q6: How about tooling Charge?
A: Tooling charge only charge once when first order, all future orders would not charge again even tooling repair or under maintance.

Q7: What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.

Q8: How do you make our business long-term and good relationship?
A: 1. We keep good quality and competitive price to ensure our customers benefit ;
    2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
 

shaft coupling

Comparison of Encoder Couplings with Other Coupling Types

When comparing encoder couplings with other coupling types, such as flexible couplings and magnetic couplings, several key factors come into play:

1. Flexibility: Encoder couplings, like flexible couplings, offer flexibility to accommodate misalignment between the encoder and the driven component. They provide angular, radial, and axial flexibility, ensuring efficient signal transmission while minimizing stress on components.

2. Signal Transmission: Encoder couplings are specifically designed to ensure accurate signal transmission between the encoder and the controlled system. This distinguishes them from other couplings that prioritize torque transmission, such as magnetic couplings used for sealing applications.

3. Backlash Reduction: Encoder couplings often prioritize low backlash to enhance the precision and accuracy of motion control systems. While some other coupling types also aim to minimize backlash, encoder couplings excel in this aspect due to their primary function of accurate signal transmission.

4. Magnetic Couplings: Magnetic couplings are commonly used for torque transmission across a sealed barrier, such as in pump applications. While they offer the advantage of hermetic sealing, they may not be as suitable for precise signal transmission as encoder couplings. Magnetic couplings can also introduce a certain amount of backlash due to their design.

5. Torque Capacity: Flexible couplings and some other types of couplings are often selected based on their torque capacity to transmit power between shafts. Encoder couplings, on the other hand, prioritize signal integrity and precision, making them ideal for applications where accurate motion control is essential.

6. Application Focus: Encoder couplings are specialized for motion control and automation systems that require precise positioning and accurate signal feedback. Other coupling types may have broader applications, including torque transmission, vibration dampening, and sealing.

7. Maintenance: Encoder couplings, like flexible couplings, require periodic inspection and maintenance to ensure proper functioning and accuracy. Magnetic couplings may have different maintenance requirements due to their sealing properties.

Overall, encoder couplings stand out in their ability to facilitate accurate signal transmission and precise motion control. While other coupling types have their own advantages and applications, encoder couplings are specifically tailored to meet the demands of motion control and automation systems where maintaining signal accuracy is paramount.

shaft coupling

Design Influence on Encoder Coupling’s Handling of Angular Misalignment

The design of an encoder coupling plays a crucial role in its ability to handle angular misalignment between shafts. Here’s how the design factors influence this capability:

  • Flexibility: Encoder couplings are designed with a certain level of flexibility to accommodate misalignment. Flexible elements, such as elastomeric inserts or helical cuts, allow the coupling to bend and compensate for angular errors without transmitting excessive stress to connected components.
  • Angular Offset Range: The design specifies the maximum angular misalignment that an encoder coupling can effectively handle. This range is determined by the coupling’s flexibility, material properties, and geometry.
  • Multi-Beam Design: Some encoder couplings feature a multi-beam design with multiple flexible beams arranged around the circumference. This design increases the coupling’s ability to absorb angular misalignment while maintaining consistent torque transmission.
  • Torsional Stiffness: While flexibility is essential, an overly flexible coupling might not be suitable for applications requiring precise motion control. The design must strike a balance between flexibility and torsional stiffness to ensure accurate signal transmission.
  • Backlash: The design should minimize or control backlash, which is the play or free movement that can occur when reversing the rotational direction. Excessive backlash can lead to inaccuracies in signal transmission and motion control.
  • Compactness: The design should aim for a compact form to fit within space-constrained environments while still providing the necessary angular misalignment compensation.
  • Material Selection: The choice of materials impacts the coupling’s ability to handle misalignment. Flexible materials like elastomers or certain metals can better accommodate angular deviations.

In summary, the design of an encoder coupling directly influences its capacity to handle angular misalignment, ensuring smooth signal transmission and accurate motion control.

shaft coupling

Key Functions and Benefits of Using an Encoder Coupling

An encoder coupling plays a vital role in motion control and automation systems, offering several functions and benefits:

1. Accurate Position and Speed Sensing: Encoder couplings ensure precise transmission of rotational motion between the motor and the encoder, allowing accurate measurement of position and speed.

2. Misalignment Compensation: They can accommodate angular, radial, and axial misalignments between the motor and encoder shafts, maintaining accurate motion even in imperfect alignment conditions.

3. Torsional Stiffness: Encoder couplings provide torsional rigidity to minimize torsional deflection, ensuring that the encoder’s output signals accurately reflect the actual motion of the motor.

4. Signal Integrity: By maintaining precise alignment, they prevent signal distortion or loss, leading to accurate position and speed feedback from the encoder.

5. Reduced Wear: Proper alignment reduces stress on shafts, bearings, and other components, prolonging the lifespan of both the motor and encoder.

6. Increased Efficiency: Encoder couplings help achieve smoother motion control, enhancing overall system efficiency and reducing the likelihood of jerky movements.

7. Enhanced Performance: With accurate position and speed feedback, encoder couplings contribute to improved system performance, consistency, and repeatability.

8. Flexible Design: They come in various designs and materials to suit different applications and requirements.

9. Compatibility: Encoder couplings are compatible with various motor and encoder types, making them versatile solutions for different setups.

10. Easy Installation: Most encoder couplings are designed for straightforward installation, reducing downtime during setup or maintenance.

Overall, encoder couplings are essential components that ensure precise motion control, accurate position sensing, and reliable automation in various industries and applications.

China Standard Plum Flower Flexible Shaft Coupling Encoder CZPT Rubber Spider Coupling Aluminum Transmission  China Standard Plum Flower Flexible Shaft Coupling Encoder CZPT Rubber Spider Coupling Aluminum Transmission
editor by CX 2023-08-17